Titled “Artificial intelligence techniques for retinal prostheses: a comprehensive review and future direction”, this contribution has been published in Journal of Neural Engineering, where we describedmain processing models for predicting the response of the retina to external stimuli. Congratulations to Chuanqing Wang and to this paper’s co-authors (Chaoming Fang, Yong Zou, Jie Yang and Mohamad Sawan) for this excellent achievement.
Reference
C. Wang, C. Fang, Y. Zou, J. Yang, M. Sawan, Artificial intelligence techniques for retinal prostheses: A comprehensive review and future direction.Journal of Neural Engineering,20, 011003, 2023.DOI: 10.1088/1741-2552/acb295.
Abstract
Objective. Retinal prostheses are promising devices to restore vision for patients with severe age-related macular degeneration or retinitis pigmentosa disease. The visual processing mechanism embodied in retinal prostheses play an important role in the restoration effect. Its performance depends on our understanding of the retina’s working mechanism and the evolvement of computer vision models. Recently, remarkable progress has been made in the field of processing algorithm for retinal prostheses where the new discovery of the retina’s working principle and state-of-the-arts computer vision models are combined together. Approach. We investigated the related research on artificial intelligence techniques for retinal prostheses. The processing algorithm in these studies could be attributed to three types: computer vision-related methods, biophysical models, and deep learning models. Main results. In this review, we first illustrate the structure and function of the normal and degenerated retina, then demonstrate the vision rehabilitation mechanism of three representative retinal prostheses. It is necessary to summarize the computational frameworks abstracted from the normal retina. In addition, the development and feature of three types of different processing algorithms are summarized. Finally, we analyze the bottleneck in existing algorithms and propose our prospect about the future directions to improve the restoration effect. Significance. This review systematically summarizes existing processing models for predicting the response of the retina to external stimuli. What’s more, the suggestions for future direction may inspire researchers in this field to design better algorithms for retinal prostheses.
More information can be found at the following link:
https://iopscience.iop.org/article/10.1088/1741-2552/acb295/meta
Fig.1: The structure of several biophysical models, including linear Gaussian, linear-nonlinear Poisson, and linear-nonlinear Bernoulli model.